2023 U.S. Annual Decarbonization Perspective

October 5, 2023

Ryan Jones

EVOLVED ENERGY RESEARCH

Agenda

- Project purpose
- Methods overview
- Results summary
 - Overview of updates
 - Results comparisons with 2022

Decarbonization pathways studies of the U.S. have proliferated since 2016

- Long-term pathways are necessary for business, government, and NGOs for the following reasons:
 - Helps government policy making and informs goal setting
 - Informs technology investments and R&D priorities
 - Helps capital-heavy business plan expenditures and operations
 - Frames trade-offs between low carbon pathways for the public
- Evolved Energy Research modeling tools have been recognized as best-in-class for study of long-term pathways and have been across many recent studies
- The large number of such studies and lack of transparency with respect to the differences between them threatens to confuse as much as to inform.

The annual refresh aims to fill a current gap in U.S. Decarbonization Analysis

- Standardization Standard for benchmarking that is universally recognized as credible and rigorous
- Continuity Effective long-term planning requires a process of regular updating. To date deep decarbonization studies remain a series of snapshots of possible futures, sometimes disjointed, without continuity between research efforts.
- Access The relevant energy-system outputs from existing deep decarbonization studies are unavailable to many who could make good use of the information.
- Technology Agnosticism A wide ranging set of pathways should be produced with a clear articulation of trade-offs between them while minimizing bias

ADP publication components

- 1. Annual report explaining updates and presenting results
 - 6-8 scenarios with continuity between years + additional sensitivities
- 2. Publication of model inputs/outputs
 - Technology assumptions
 - Key outputs on a state geography
- 3. Periodic white papers on topics of interest in the community

Funding is provided by Breakthrough Energy Foundation

Methods overview

Analytical tools

EnergyPATHWAYS (EP) is our demand-side stockrollover accounting model that produces scenarios based on exogenous service-demand and sale shares

Hourly Load Shape

RIO is a supply-side macro-energy model that finds the lowest cost investment and operations plan with best-in-class temporal and spatial granularity

2021 Energy System

EnergyPATHWAYS Subsectors

Buildings				
	Subsector		# Technologies	
	commercial air conditioning		22	
	commercial cooking		4	
	commercial lighting		26	
	commercial other	sec	N/A	
cial	commercial refrigeration	ţ	18	
Jer	commercial space heating	ing	18	
u u	commercial unspecified	ild	N/A	
ē	commercial ventilation	pq	4	
	commercial water heating	12	7	
	district services		N/A	
	office equipment (non-p.c.)		N/A	
	office equipment (p.c.)		N/A	
	residential air conditioning		13	
	residential clothes drying		3	
	residential clothes washing		4	
	residential computers and related		6	
	residential cooking residential dishwashing residential freezing		3	
a			2	
nti			4	
ide	residential furnace fans	qi	N/A	
Ses	residential lighting	nil	39	
	residential other uses	3 p 3	14	
	residential refrigeration		6	
	residential secondary heating		N/A	
	residential space heating		18	
	residential televisions and related		5	
	residential water heating		6	

0-	Transportation				
	Subsector	Sub-category	# Technologies		
	aviation		N/A		
	buses	3 duty cycles	5		
	domestic shipping		N/A		
	freight rail		N/A		
	heavy duty trucks	2 duty cycles	6		
no	international				
tati	shipping		N/A		
P 2	light duty autos		10		
nsp	light duty trucks	2 types	11		
La	lubricants		N/A		

3 types

N/A N/A

N/A

6 N/A

medium duty trucks

military use motorcycles

passenger rail

recreational boats

Industry

	Subsector	Sub-category
	agriculture-crops	4 process types
	agriculture-other	4 process types
	aluminum industry	6 process types
	balance of manufacturing other	9 process types
	bulk chemicals	50 process types
	cement	8 process types
	coal mining	2 process types
	computer and electronic products	10 process types
	construction	3 process types
>	electrical equip., appliances, and components	9 process types
IST	fabricated metal products	9 process types
ופר	food and kindred products	9 process types
	glass and glass products	7 process types
	iron and steel	8 process types
	machinery	9 process types
	metal and other non-metallic mining	2 process types
	oil & gas mining	2 process types
	paper and allied products	7 process types
	petroleum refining	1 process type
	plastic and rubber products	9 process types
	transportation equipment	9 process types
	wood products	9 process types

*Electrolysis load is modeled as an energy supply technology

RIO Supply Technologies New Build Decisions

Electricity

Туре	Name
	offshore wind 1
	offshore wind 2
	offshore wind 3
	offshore wind 4
	offshore wind 5
	offshore wind 6
file	offshore wind 7
20	onshore wind 1
р Д	onshore wind 2
lixe	onshore wind 3
	onshore wind 4
	onshore wind 5
	rooftop solar - com
	rooftop solar - pro
	rooftop solar - res
	utility-scale solar pv 1
la sual su a	upgrades to existing hydro
nyaro	non-powered dams
	biomass power allam w/cc
	coal power w/cc
	coal w/cc - retrofit
_	gas combined cycle
ma	gas combined cycle w/cc
Jer	gas combustion turbine
Ŧ	gas w/cc - retrofit
	mothballed generator
	nuclear smr - steam turbine generator
	nuclear smr - retrofit

Fuels & CO2

Type Name

alcohol-to-x bio-gasification ch4 w/cc bio-gasification fischer-tropsch w/cc bio-gasification h2 w/cc biomass fast pyrolysis w/cc cellulosic ethanol corn ethanol w/cc corn to switchgrass conversion conversion electrolysis h2 ethanol gasoline blending fischer-tropsch liquids energy haber-bosch hydrogen liquefaction methanation steam reforming steam reforming w/cc Ing production Ing production electric Ing production electric retrofit direct air capture - solid sorbent onshore wind energy park

Blends & Commodities

Туре	Name
hd	21 final energy types
ble	7 biomass blend types
ity	62 biomass feedstock types
lodi	20 geologic sequestration bins
mm	16 land sink enhancement measures
8	21 non-CO2 mitigation measures

Energy Storage

Туре	Name
	h2 storage salt cavern
blend	h2 storage underground pipes
	nuclear thermal energy storage
a la atria	li-ion
electric	long duration storage

Transmission & Pipelines

Туре	Name
·	Electricity
Inter-	Hydrogen
2011.01	CO2

RIO Endogenized Industry New Build Decisions

Steam

	Туре	Name
	conversion	electric boiler
tior	conversion	h2 boiler
Juc	conversion	industrial heat pump
ğ	conversion	thermal storage - resistor
Ē	blend storage	thermal energy storage
itea	conversion	pipeline gas boiler
0	conversion	electric boiler

Iron & Steel

	Туре	Name
	conversion	coke plant w/cc
	conversion	BF/BOF
	conversion	BF/BOF w/cc
	conversion	DRI
ee	conversion	EAF
201	conversion	H2 DRI
0 _	conversion	steel - cold rolling
2	conversion	steel - continuous casting
	conversion	steel - h2 cold rolling
	conversion	steel - h2 continuous casting
	conversion	steel - h2 hot rolling
	conversion	steel - hot rolling

Cement & Lime

	Туре	Name
	conversion	clinker production - conventional
	conversion	clinker production - direct separation ccs
		clinker production - direct separation ccs
	conversion	retrofit
	conversion	clinker production - oxyfuel biomass ccs
a	conversion	clinker production - oxyfuel gas ccs
Ē	conversion	lime production - conventional
ø	conversion	lime production - direct separation ccs
ent		lime production - direct separation ccs
em	conversion	retrofit
0	conversion	lime production - oxyfuel biomass ccs
	conversion	lime production - oxyfuel gas ccs
	conversion	kiln_burner_biomass
	conversion	kiln_burner_h2
	conversion	kiln_burner_msw
	conversion	kiln_burner_pipeline gas

Temporal and spatial granularity

hourly operations, 40 sample days per year, state of charge tracking between sample days

Scenarios

Scenario	Description
Baseline	Based on the DOE's Annual Energy Outlook 2023.
IRA	This scenario is based on Princeton's REPEAT mid scenario.
Central	High electrification demand-side case, and on the supply-side has no additional constraints on technologies and resource availability.
Low Demand	Starts from Central and reduces the demand for energy services.
Low Land	Starts from Central and limits the use of land-intensive mitigation solutions, including bioenergy crops, wind and solar power generating plants, and transmission lines.
100% Renewables	Starts from Central and disallows any primary energy from fossil fuels in 2050.
Slow Consumer Uptake	This net-zero scenario delays by twenty years the uptake of fuel-switching technologies including electric vehicles, heat pumps, fuel-cell vehicles, etc.
Drop-In	Starts from Slow Consumer Uptake and caps renewable build at historical rates and disallows new long-distance transmission or pipelines.

page 12

Collaborations with NREL

- Joint projects:
 - Electrification Futures Study (EFS)
 - North American Renewable Integration Study (NARIS)
 - High electrification load shapes (ongoing)
- NREL Data/Tools Employed
 - Annual Technology Baseline
 - ReEDS transmission costs and supply curves for select technologies
 - Wind and solar geospatial datasets
 - Wind Toolkit & National Solar Radiation Database
 - System Advisor Model (SAM)

Results Summary

Sankey diagram comparison 2021 vs. 2050 IRA

Sankey diagram comparison 2050 IRA vs. 2050 Central

Sankey diagram comparison 2050 100% Renewables vs. 2050 Drop-In

direct air capture: 0.8

boiler: 4.1

steam: 4.1

ammonia: 0.7

buildings: 17.2

industry: 23.6

road transport: 13.1

other transport: 4.5

energy exports: 8.3

Key modeling updates since ADP 2022

- IRA tax credits, AEO 2023, ATB 2023
- Technology build rate constraints
- Cement, Iron & Steel
- Ethanol to Jet Fuel
- Direct Air Capture technology
- Heat Pump Cost
- Energy Park Technologies
- U.S. Baseline Land-Sink

Emissions ADP 2022 vs. 2023 Focus: IRA tax credits, ATB 2023

- Differences in geologic sequestration and natural gas are significant.
- The 2023 ADP has 843 Mt carbon sequestration in 2050 compared with 449 Mt last year.
- That difference comes from captured CO2 in the power sector from gas generation.

Gross Emissions

Electricity Capacity ADP 2022 vs. 2023 Focus: IRA tax credits, ATB 2023

- Gas with carbon capture and slower retirement of coal are among the more significant changes
- Without IRA tax credits, but applying net-zero constraints, gas with carbon capture falls from 135 GW to 44 GW
- The operation of gas with carbon capture in a high renewables system raises questions about the flexibility of these resources and whether achieving the necessary flexibility will result in additional capital costs that ultimately make the resources uncompetitive

Emissions constraint shadow prices

- IRA tax credits reduce the marginal cost of emissions reductions in a netzero scenario by \$80-100/tonne in the 2030s
- Emissions reductions for things not explicitly targeted by IRA fall in competitiveness against those measures that do receive tax credits.
 - Retirement of coal
 - Broad enhancement of the land-sink
 - Broad non-CO2 reductions

Electricity generation comparison between Central and Central no IRA

Electrolysis Capacity ADP 2022 vs. 2023 Focus: IRA tax credits, ATB 2023

- ADP 2022 and 2023 central scenario reach similar electrolysis build in 2050, but the 2023 ADP builds these electrolyzers roughly a decade sooner.
- As has been demonstrated in research by Evolved Energy Research and others excess electrolytic load when renewable penetrations are too low can increase emissions by diverting electricity that would reduce thermal generation towards the production of hydrogen, which is a less efficient application.
- That said, as clearly demonstrated, the IRA tax credits will help spur an industry that will be critical in the long-term for reaching netzero targets.

Technology build rate constraints

The Inflation Reduction Act made necessary the inclusion of new build rate constraints for many technologies in the model. Without them, the model frontloads the build of technologies to take advantage of the tax credits in ways that are clearly unrealistic.

Solar PV 29.1 GW in 2023 2025-2028 – 5 years Starting build rate	e based on EIA's <u>Short-</u>
34.7 GW in 2024 2029-2050 - 10 years Term energy outline	ook, accessed July 2023.
(Frozen at 15 GW in Drop-In Scenario) (Frozen at 15 GW in Drop-In Scenario)	
Onshore Wind7.4 GW in 20232026-2034 - 5 yearsStarting build rate	e based on EIA's <u>Short-</u>
7.5 GW in 2024 2034-2050 - 10 years Term energy outle	ook, accessed July 2023,
16.8 in 2025(Frozen at 7.5 GW in Drop-In Scenario)then returning to	historical max build in
(Frozen at 7.5 GW in Drop-In Scenario) 2025.	
Offshore Wind 1 GW in 2024 2025-2050 – 5 years Allows for near-te	erm state targets to be
(Frozen at 7.5 GW in Drop-In Scenario) (Frozen at 7.5 GW in Drop-In Scenario) met.	
Electrolysis2 GWth in 20262027-2030 – 9 monthsStarting build rate	e based on early growth
2031-2050 – 10 years rate of solar PV. N	Maturation happens in
the early 2030s.	
CCS Technologies5 GW in 20292030-2050 - 5 yearsLater start year d	ue to
construction/peri	mitting times.
Nuclear 3.5 GW in 2031 2032-2050 – 5 years Later start year d	ue to
construction/peri	mitting times.
Advanced biofuels 4 GW in 2024 2030-2050 – 10 years Starting build rate	e based on historical
ethanol plant bui	ld rates.
Advanced e-fuels 4 GW in 2024 2032-2050 – 10 years Starting build rate	e based on historical
ethanol plant bui	ld rates.

Output build rates of key technologies

GW/year

Philosophically we have attempted to constrain technologies so that:

- Long-term outcomes are minimally impacted;
- 2. Systemic bias between technologies is minimized
- Technology maturity is acknowledged (a less mature technology may start at a lower build rate but may also grow faster)
- 4. Assumptions can be shared across scenarios, except where differences are part of the scenario itself.

	nuclear power					gas power w/cc					onshore wind (grid connected)					electrolyzers					solar								
250	Run N Ba	Vamo Aselir A	e ne																										/
200	Ce 10 Dr	entra 0% op-li	ll Ren n	ewa	ables	6																							
150	Lo Lo	w La w D ow C	and ema Cons	and sum	er												/									~		/	
100 -																/													
50												2								\langle		1							
0																													
	2022-2025 2026-2030	2031-2035	2036-2040	2041-2045	2046-2050	2022-2025	2026-2030	2031-2035	2036-2040	2041-2045	2046-2050	2022-2025	2026-2030	2031-2035	2036-2040	2041-2045	2046-2050	2022-2025	2026-2030	2031-2035	2036-2040	2041-2045	2046-2050	2022-2025	2026-2030	2031-2035	2036-2040	2041-2045	2046-2050

Cement and lime

- The higher resolution in ADP 2023 leads to more concrete insight into a low carbon transition in cement and lime, and indicates what specific measures appear most competitive given current assumptions about future technology and fuel costs.
- In all scenarios, the main trend seen in the modeling is the retrofitting of existing kilns with direct separation technology with CCS. This transition can be conducted in stages as economics and emissions limits dictate, with CCS initially applied to process emissions only, and subsequently to energy emissions from the whole plant.

Steel production

- In the Central case, more than 95% of steel is manufactured using EAF
- Scrap inputs at roughly current levels comprise 70% of the EAF input charge, and H2-DRI comprises most of the remaining 30%.
- BF/BOF production is reduced 90% below today's level.
- The main change in the energy mix is hydrogen's growth to 30-40% by 2050 in the net zero cases, and a comparable reduction in coke and coal.

Ethanol production and its use

- Recent advancements in catalysts have opened a new pathway for existing ethanol to be upgraded to jet fuel. This technology wasn't included in the 2022 ADP and hadn't yet been studied in any national decarbonization studies we are aware of at that point.
- Ethanol to jet is technology consistently selected across all scenarios. It is especially competitive when paired with carbon capture on existing ethanol.

Biomass ADP 2022 vs. 2023

- Between 2022 and 2023 overall biomass consumption increased across all scenarios.
- This runs counter to longer term trends in our modeling work where biomass use in low carbon pathways has generally trended lower as other primary energy sources (namely renewables producing e-fuels) have seen expected costs revised downward.
- Most biomass applications outside of corn ethanol have not seen dramatic changes.

Direct Air Capture technology updates

Improvement:

DAC model for liquid solvent and solid sorbent techs based on recent literature and simulated these technologies across 1,035 locations across the U.S. using 22 years of historical weather data. The best locations across each state were averaged to create efficiency and capture rate values, shown for the solid sorbent technology

Solid Sorbent Technology Average Capture Efficiency *

Annual Capture Rate

Result:

Last year the Drop-In scenario built over 400 Mt/year DAC capacity with 75% built in Texas. This year, Drop-In scenario built 520 Mt/year the majority was built in mountain west and in the northwest.

Drop-In Scenario DAC Capacity

* Efficiency numbers do not include the potential savings from the use of heat pumps

5.0491

Heat pump technology cost

- Residential heating system cost in our past work (like EFS) have assumed uniform size across the U.S.
- These assumptions have been updated using NREL ResStock data and an analysis of peak heating demand across U.S. counties.

Energy park potential

- We have developed an Energy Park technology representation as part of the 2023 ADP by isolating those candidate project areas with the highest capacity factors and highest transmission costs
- It is understood that moving hydrogen in bulk can be an order of magnitude cheaper than moving electricity. This creates an opportunity to develop wind resources further from population centers for the purpose of creating fuels and then piping those fuels to different demand applications.

Energy park deployment

- Energy parks for hydrogen production were used by the model across all net-zero scenarios
- This is an important exception to a dynamic that is often discussed in our past work, which is the value of grid connected electrolysis for balancing a high renewable power system (electrolysis can still be co-located with renewables while being grid connected). This value provided by electrolysis has diminishing returns as the penetration of e-fuel production on a system climbs, and at that point, the cost savings that come from avoiding transmission and minimizing siting conflicts becomes more important.

U.S. baseline land sink

- New outputs provide a better look at total greenhouse gas emissions for a sub-national geography and the existing land-sink baseline is better understood compared to ADP 2022.
- This data can be very important for states trying to understand what a low carbon energy transition looks like within their boundaries.

Gross energy system cost

- The gross annual system cost of the net-zero energy system as well as land sector and non-energy, non-CO2 mitigation measures is shown across all scenarios.
- For energy system costs, this is the annualized cost capital and operating cost for both energy supply (electricity and fuels) and energy end-use technologies (in vehicles, buildings, factories, etc.). Compared to the equivalent figure in ADP 2022 gross energy system cost has increased by roughly 25% due to the difference between 2018 and 2022 dollars. Elevated fuel prices after the invasion of Ukraine are responsible for high energy system costs for 2021.

Net Cost of Achieving Net-Zero Greenhouse Gases

- Costs are net of the Baseline scenario and represent the sum of levelized capital costs and variable costs in each modeled year.
- The Central scenario has a net cost of \$68B/y above that level and \$159B/y above the IRA scenario.
- Total investment in electricity generation is \$4.5T in the Central scenario

Supplemental Results

Greenhouse gas emissions by scenario (Gigatonnes)

All net-zero scenarios are constrained to take a straight line path to net-zero emissions in 2050. The IRA scenario is shown to reduce annual emissions by one gigatonne per year in the year 2035 from 5.34 gigatonnes in the baseline to 4.27 gigatonnes in the IRA scenario. IRA policies induce 100 million tonnes per year of CO2 capture by 2040, primarily from cement and ethanol, but most of this captured CO2 is used to synthesize fuels rather than being sequestered. This provides a pairing with hydrogen produced from electrolysis.

Primary energy consumed domestically

Final energy

Electric Transmission

Hydrogen Pipelines

Electricity capacity

Electricity generation

Electricity load

Use of captured carbon

Source of captured carbon

Hydrogen production

Hydrogen consumption

On road transportation stock

Residential building heating technologies

page 50

Steam production

Electricity storage capacity (GW)

Generation share of U.S. electricity by day of the year and scenario

THANK YOU

www.evolved.energy

Bottom-up stock turnover models

- EER uses a model called EnergyPATHWAYS, a bottom-up stock accounting model
- The model tracks explicit user decisions about technology adoption and produces final-energy demand and hourly profiles for future years

Example stock-rollover for Light Duty Automobiles

- Lines denote the vintage of the vehicle stock (i.e., when it's placed in service)
- Vintage impacts technology attributes (efficiency and cost) that can change over time
- Many technologies also have service demand that differs by age (new vehicles are driven more than old vehicles)

EVOLVED

ENERGY RESEARCH

Projecting energy demand from the "bottom-up"

201⁴ 201⁶ 20

1.00E+13

9.00E+12

8.00E+12

6.00E+12

5.00E+12

4.00E+12

3.00E+12

2.00E+12

1.00E+12

0.00E+00

2018

2022

0.2

0.1

0

2014

🚡 7.00E+12

emand

Residential

Scenario-based, bottomup energy model (not optimization-based)

EVOLVED

ENERGY RESEARCH

Creating hourly electricity load shapes

RIO considers investments and operations to find the least-cost, reliable system

Operations and investment decisions are co-optimized across the study period to find the optimal portfolio

Day sampling process **Clustering and validation**

pacity Factor

Contrasting daily operations in high RE systems

RIO Output example from the Northeast

- Many days look like August 11th: e-fuels are being produced and no thermal capacity is needed at any point during the day.
- But, we need a system prepared for August 9th : Almost no wind is produced, must serve loads only, and thermal generation is needed every hour

RIO uses hourly reserve margin constraints by zone to account for changing system make-up

Assessing Reliability Becomes Challenging in Low-Carbon Electricity Systems

Excluded dynamics in RIO

Missing Dynamic	Impact on Model Results	Rational for Exclusion
Price-responsive demand	Higher demand for high-cost energy than may occur in reality	Demand-side inclusion in the optimization increases problem-size, and is imperfect when done; focus on demand-scenarios instead
Integer investment decisions	Technology deployment is less 'lumpy' than in reality	MILP <u>significantly</u> increases solve times; 'rounding' can often reasonably approximate results
Endogenous fuel prices	Reduction in fuel demand may result in a reduction in cost	Projecting long-term supply curve is difficult (shale gas revolution), muted impact when considering global energy markets (oil)
Endogenous technology cost	Delayed-deployment can take advantage of reductions in technology cost	Requires MILP; technology 'learning' occurs globally and RIO reflects U.S. markets only
Imperfect foresight & imperfect coordination	Impact of a Carbon Price induces greater response than in the real world	We add 'friction' multiple places in the optimization, 'right' level of friction is difficult to judge
Higher operational detail in electricity	Disruptive impacts of high variable generation is likely underestimated in the near-term, underestimation of transmission	NREL modeling has shown unit commitment, etc. to not substantially change results for large geographic regions